머신러닝 실습5 머신러닝 실습 with Tensorflow 7장 - Neural Network for XOR problem - 머신러닝 실습 with Tensorflow 7장- Neural Network for XOR problem - XOR 문제는 Neural Network를 시작시킨 문제라고 생각해도 과언이 아니다. 이전의 문제들은 W와 b의 하나의 값만을 이용하여 Linear regression을 통해 해결이 가능하였다. 하지만 XOR의 문제는 하나의 W와 b의 값으로 예측하는 것이 불가능하였다. 그래서 나온 방법이 Neural Network이다. 또 다른 layer를 만들어서 1차 결과 값을 새로운 layer의 입력 값으로 넣는 과정을 통해 최종 결과 값을 도출하는 것이다. 따라서 Neural Network에 대한 tensorflow 구현의 첫 번째로 XOR 문제를 풀어볼 것이다. 우선 x_data와 y_data는 정해져.. 2017. 6. 11. 머신러닝 실습 with Tensorflow 6장 - MNIST data test - 머신러닝 실습 with Tensorflow 6장- MNIST data test - 이번 장에서는 Tensorflow에서 머신러닝 모델을 구축할 때 가장 많이 data set으로 사용되는 MNIST을 이용하여 학습시켜볼 것이다. MNIST data는 0부터 9까지 적혀있는 숫자를 나타낸다. 하지만 이 숫자들의 모양이 조금 제각각이다. 하지만 사람의 눈으로 보았을 때에는 딱 봐도 무슨 숫자인지 알 수 있을 정도의 차이이다. 그렇다면 이런 data를 컴퓨터에 넣어주어 학습을 시키면 새로 적은 숫자에 대해 그 숫자가 무엇인지를 맞출 수 있을까? MNIST data set을 가지고 하는 모델 학습은 이것을 목표로 한다. MNIST data set은 28*28*1 의 픽셀의 이미지로 만들어진다. 그러므로 28*28.. 2017. 6. 9. 머신러닝 실습 with Tensorflow 4장 - Softmax classification - 머신러닝 실습 with Tensorflow 4장- Softmax classification - Softmax는 여러 개의 class를 예측할 때 사용되는 activation function이다. 앞선 장들에서는 sigmoid 함수만을 사용하여 예측을 하였는데 실제로 Output에 해당하는 layer에서는 Softmax를 이용하여 예측하는 경우가 많다. Softmax의 경우 실수로 나타나는 Output의 값들을 확률적으로 나오게 하여 모든 class의 합이 1이 된다. 그렇기 때문에 하나의 output에 대한 확률이 높아질 경우 다른 output에 대한 확률이 낮아지는 현상이 발생하게 된다. 이를 tensorflow로 구현하는 것은 매우 간단하다. 왜냐하면 tensorflow는 머신러닝을 위한 내장 함수를.. 2017. 6. 7. 머신러닝 실습 with Tensorflow 3장 - Logistic regression - 머신러닝 실습 with Tensorflow 3장- Logistic regression - Logistic regression은 Linear regression과 다르게 결과를 0과 1로 나타낸다. 이 때 사용하는 함수는 sigmoid 함수이다. 가설의 형태가 sigmoid 함수로 나타나게 되는데 들어가는 x의 값에 weight이 곱해지는 형태가 된다. cost function의 경우 log를 이용하여 Linear regression과는 다르게 정의를 하게 된다. 하지만 이 cost function 역시 Gradient descent algorithm을 사용하여 최소화를 시킨다. 우리의 아래와 같은 식을 알고 있기 때문에 이를 그대로 tensorflow에 작성만 하면 logistic regression에 .. 2017. 6. 6. 머신러닝 실습 with Tensorflow 2장 - Multi-variable linear regression - 머신러닝 실습 with Tensorflow 2장- Multi-variable linear regression - 이제 데이터에서 하나의 입력 값이 아니라 여러 개의 입력 값을 받는 Multi-variable linear regression에 대한 tensorflow 실습을 진행할 것이다. 우선 Multi-variable linear regression을 살펴보면 입력 값이 x 하나가 아니라 x1, x2, x3와 같이 여러 개의 입력 값을 받을 수 있고 이에 따른 weight 값이 w1, w2, w3로 존재하게 된다. tensorflow 코드를 이용하게 되면 x1_data, x2_data, x3_data 와 같이 세 개의 데이터를 나누어서 지정을 할 수 있다. 또한 w의 값도 w1, w2, w3를 각각 V.. 2017. 6. 4. 이전 1 다음